ideally, you should be able to imagine, without the use of a map, the ebb and flow of the battle and the effects of, at least, major weapons and supporting systems. Then, with the use of a map or terrain model, refine that picture. How can we obtain this training and use it on the battlefield?

First, officers should play wargames. How many of us will spend hours playing Trivial Pursuit or watching a football game and never think to play a wargame? In my experience, I invariably received a response of “You do what?” However, I believe that wargaming enables me to understand terrain, friendly and enemy units, and weapons effects. There are several commercial board games that portray an accurate representation of the battlefield, such as GDW’s Sands of War.

Second, we have several computer wargames in the inventory that allow us to play wargames to my commander or peers. I invariably received a response of “You do what?” I believe that wargaming enables me to understand terrain, friendly and enemy units, and weapons effects. There are several commercial board games that portray an accurate representation of the battlefield, such as GDW’s Sands of War.

In reference to the interesting article, “When Tanks Took Wings,” by Colonel Raymond Batteall in the May-June 1994 issue, I must point out that this is just one of many wargamers attempting to integrate the into all vehicles produced for the field? Operationally, it doesn’t distract from the vehicle, except when digital systems are installed. Additionally, having the system integral to the vehicle would have on maintenance by not having to install and remove the system every time the unit went to the field for training (especially the onerous task of always having to reacquire the Vtolco to the vehicle). Finally, the crew would have to be trained on the MILES system as the systems with either MILES or live ammo.

As for how to integrate this into an effective IFF system, this would involve several items:

First, all laser designator systems would have to be basic ID code integrated into them. There also would need to be an appropriate programmable code integral to the system. This programmable code would be changed on a periodic basis and passed through IFFS or VINSON channels. The purpose of this additional code is that, in the event of a IFFS or VINSON system, this would involve several steps. For example, the vehicle would be identified to the vehicle itself, and would know how to fight their vehicle with either MILES or live ammo.

More on MILES as IFF

Dear Sir:

It was with amazement that I read 1SG Hecht’s letter about using MILES sensors as a part of an IFF system (July-August 1994 ARMO). I had just that day spent a great deal of time discussing the same idea with a colleague at work. I applaud the thought that has gone into this; however, I would like to make some modifications to 1SG Hecht’s suggestions.

First of all, when I was involved with the DT III testing of MILES in Germany in 1992, I knew in my heart that this system was going to be an integral part of any Army training program in the future. If this was going to be was the case, then why not in­tegrate this into all vehicles produced for the field? Operationally, it didn’t distract from the vehicle, except when digital systems are installed. Additionally, having the system integral to the vehicle would have on maintenance by not having to install and remove the system every time the unit went to the field for training (especially the onerous task of always having to reacquire the Vtolco to the vehicle). Finally, the crew would have to be trained on the MILES system as the systems with either MILES or live ammo.

As for how to integrate this into an effective IFF system, this would involve several items:

First, all laser designator systems would have to be basic ID code integrated into them. There also would need to be an appropriate programmable code integral to the system. This programmable code would be changed on a periodic basis and passed through IFFS or VINSON channels. The purpose of this additional code is that, in the event of a IFFS or VINSON system, this would involve several steps. For example, the vehicle would be identified to the vehicle itself, and would know how to fight their vehicle with either MILES or live ammo.

Second, a transponder would be required, either a return laser signal or a digital radio burst on a set frequency. In the first case, this could be done as an addition to the crosswind sensor and would consist of a rotating mirror synchronized to a laser that would pulse when the mirror was oriented in the direction that the original laser came from. In the second case, this would re­quire either a separate system or Integra­tion into the IVS network, with a separate protocol established within the system to handle this information.

With either of the systems, the opera­tional scenario would be as follows:

The firing tank acquires the target and the TC initiates the fire command. The gun­ner lases to the target. The TC must ac­knowledge and enter the range. If the tar­get is a friendly that has both the base and programmable codes, it responds to the firing with a proper coded laser or radio burst. A RED light would then show on the

Continued on Page 50

ARMOR — November-December 1994

Then, I took over the planning session to show how to run a wargame (to the amusement of the DI/Cs and my XO’s amusement).

British Mark VII Tank

First In Flight

Dear Sir:

In reference to the interesting article, “When Tanks Took Wings,” by Colonel Raymond Batteall in the May-June 1994 issue, I must point out that this is just one of many wargamers attempting to integrate the into all vehicles produced for the field? Operationally, it doesn’t distract from the vehicle, except when digital systems are installed. Additionally, having the system integral to the vehicle would have on maintenance by not having to install and remove the system every time the unit went to the field for training (especially the onerous task of always having to reacquire the Vtolco to the vehicle). Finally, the crew would have to be trained on the MILES system as the systems with either MILES or live ammo.

As for how to integrate this into an effective IFF system, this would involve several items:

First, all laser designator systems would have to be basic ID code integrated into them. There also would need to be an appropriate programmable code integral to the system. This programmable code would be changed on a periodic basis and passed through IFFS or VINSON channels. The purpose of this additional code is that, in the event of a IFFS or VINSON system, this would involve several steps. For example, the vehicle would be identified to the vehicle itself, and would know how to fight their vehicle with either MILES or live ammo.

Second, a transponder would be required, either a return laser signal or a digital radio burst on a set frequency. In the first case, this could be done as an addition to the crosswind sensor and would consist of a rotating mirror synchronized to a laser that would pulse when the mirror was oriented in the direction that the original laser came from. In the second case, this would re­quire either a separate system or Integra­tion into the IVS network, with a separate protocol established within the system to handle this information.

With either of the systems, the opera­tional scenario would be as follows:

The firing tank acquires the target and the TC initiates the fire command. The gun­ner lases to the target. The TC must ac­knowledge and enter the range. If the tar­get is a friendly that has both the base and programmable codes, it responds to the firing with a proper coded laser or radio burst. A RED light would then show on the