CONFIDENTIAL

APPENDIX 1 TO ANNEX A
CURRENT ENEMY HARDWARE

1. (c) LIST OF HARDWARE IN CURRENT ENEMY INVENTORY

The following is a list of hardware in the current enemy inventory. The list indicates the types of devices and their origin as far as it can be determined. In some cases the list provides special names used for the item by combat forces in the RVN. Except for those items specifically indicated, the description of characteristics, functioning, and disarming instructions as well as techniques of employment of devices are provided in CIGV Booklet 3/U/NA Employment of Mines and Booby Traps. The same information on the latest devices which have not been previously documented is found in para 2 below.

a. US Mines
 (1) Antipersonnel Mine, M2A1 with Fuse, M6A1
 (2) Antipersonnel Mine, M9 with Fuse, M7A1
 (3) Antipersonnel Mine, M14
 (4) Antipersonnel Mine, M16A1 with Fuse, M605
 (5) Antitank Mine, M6A2 with Fuse, M603
 (6) Antitank Mine, M7A2 with Fuse, M603
 (7) Converted US Fragmentation Bomb, M63

b. Soviet Mines
 (1) Antitank Mine, TM-41
 (2) Antitank Mine, TM2-2

c. CHICOM Mines
 (1) Antipersonnel and Antitank Mine #6
 (2) Antitank Mine M1A1-TNT

1. Reference 3
d. VC Mines and Shaped Charges

(1) Fixed Directional Fragmentation Mine (MDH Series: MDH2, MDH3, MDH5, MDH8, MDH9, MDH10, and MDH C-40)

(2) 5-Gallon Oil Can Type Mine

(3) 5.50 Cal Ammunition Box Mine

(4) Improvised Mine

(5) Pyramid Shaped Mine, Long Type

(6) Improvised Mine 5-Gallon can with BLU-3

(7) Mine FT 40

(8) Cement Turtle Mine

(9) Sheet Metal Turtle Mine

(10) Large Watermine

(11) Small Watermine

(12) Antipersonnel Mine

(13) Sky Horse

(14) Mine Improvised from Shell Case

(15) Toe Popper Mine

(16) Cylindrical Cement Fragmentation Mine

(17) Cylindrical Cast Iron Fragmentation Mine

(18) Cylindrical Mine

(19) Improvised Antipersonnel and Antitank Mine

(20) Mound Shaped Mine

(21) Round Volume Mine

(22) Modified BLU-3/B

(23) Non-Electric Shaped Charge Mine
(24) Electrical Antivehicular Shaped Charge Mine
(25) Improvised Shaped Charge
(26) Bounding Bauxomine Shaped Charge Mine
(27) Converted US Fragmentation Bomb, M83
(28) Homemade VC AP Mine
(29) VC Chemical Actuated Mine
(30) Modified BLU-3/B Satchel Charge
(31) Box Mine, Wood

e. Soviet Grenades
 (1) Antitank Hand Grenade, Type RPG-6
 (2) RPG-43, Antitank Hand Grenade
 (3) RGD-33, Offensive and Defensive Hand Grenade
 (4) Defensive Hand Grenade, Type F-1
 (5) RPG-40, Hand Grenade
 (6) Offensive Hand Grenade, Type RG-42

f. CHICOM Grenades

g. VC Grenades
 (1) Modified Grenades
 (2) Explosive Device Fragmentation Grenade
 (3) Four-Sided Shaped Charge Hand Grenade
 (4) VC Bursting Chemical Grenade

h. US Fuzes
 (1) Firing Device, Pull Type, M1
 (2) Firing Device, Delay Type, M1
 (3) Firing Device, Pressure Type, M1A1
 (4) Firing Device, Pull-Release Type, M3
(5) Firing Device, Pressure-Release Type, M3

1. Soviet Fuzes
 (1) Pressure Fuze, MV-5
 (2) Pull Fuze, MUV
 (3) Pull Fuze, VPF

j. CHICOM Fuzes
 Antitank Mine, M1A1

k. VC Firing Devices
 (1) Electric Firing Device
 (2) Improvised Fuze
 (3) Flashlight Firing Device
 (4) Pressure/Pull Firing Device
 (5) Chemical Firing Devices
 (6) Chemical/Mechanical Release Sabotage Device
 (7) Pressure Electric Firing Device
 (8) Chemical Delay Firing Device

l. Miscellaneous Associated Items
 (1) US Trip Flare, M48 with Fuze M6A1
 (2) US Trip Flare, M49 with Fuze M12
 (3) VC Bicycle Mine
 (4) US Butterfly Bomb (Bomb, Fragmentation M63)
 (5) CHICOM TNT Demolition Block
 (6) Soviet TNT Demolition Block
 (7) CHICOM Red Phosphorus
 (8) VC Satchel Charge
 (9) Bangalore Torpedo
CONFIDENTIAL

(10) Bamboo Bangalore
(11) Soviet Blasting Machine PL-2
(12) CHICOM Blasting Machine LA2B

m. VC Booby Traps
 (1) Spike Trap Box
 (2) Spike Trap Kit
 (3) Trap Bridge
 (4) Steel Arrow Trap
 (5) Bamboo Whip
 (6) Barbed Spike Plate
 (7) Pointed Bamboo Stakes
 (8) Rotating Spike Trench
 (9) Spear Trap
 (10) Spear Launcher
 (11) Cartridge Trap
 (12) Grenade Trap
 (13) VC Banner
 (14) Booby Trap Punji Sticks
 (15) Booby Trap Gate
 (16) Booby Trap Bomblet
 (17) Grenade Launcher
 (18) Fountain Pen Sabotage Device
 (19) Cigarette Lighter Assassination Device
 (20) Booby Trap Grenade
 (21) The Mane
 (22) Bamboo Arch

A-1-5

CONFIDENTIAL
(23) Helicopter Trap
(24) Face Knocking Trap
(25) Cigarette Pack Antipersonnel Bomb
(26) Command Detonation of Triwired Shaped Charge
(27) Grenade Sabotage Device
(28) VC Explosive Cigarette
(29) Chemical/Mechanical Release Sabotage Devices
(30) Homemade VC AP Mine Booby Trap
(31) Incendiary Sabotage Device

2. (c) Description of New Items of Hardware

a. List of Hardware

(1) Fuze AT Mine, M1A1 (CHICOM Copy)
(2) Chemical Delay Firing Device
(3) Chemical/Mechanical Release Sabotage Device
(4) VC Chemical Actuated Mine
(5) VC Bursting Chemical Grenade
(6) Homemade VC AP Mine Booby Trap
(7) Converted US Fragmentation Bomb, M83
(8) Directional Fragmentation Mines

(a) Directional Fragmentation Mine, MDH-2
(b) Directional Fragmentation Mine, Similar to MDH-2
(c) Directional Fragmentation Mine, MDH-3
(d) Directional Fragmentation Mine, MDH-5
(e) Directional Fragmentation Mine, MDH-8
(f) Directional Fragmentation Mine, MDH-10
(g) Directional Fragmentation Mine, MDH-C-40
(9) Locally Manufactured Mines and Explosive Devices
 (a) Homemade VC AP Mine
 (b) Suspected VC AT Mine
 (c) Explosive Charge Designed to Resemble a Concrete Building Block
 (d) Modified BLU-3/B Satchel Charge

(10) Antitank Mine, TM-41

(11) VC Terrorist Devices
 (a) VC Explosive Cigarette
 (b) Incendiary Sabotage Device

(12) Watermines and Associated Equipment
 (a) Spherical, Floating, Moored Mine
 (b) Frustrum, Floating, Moored Mine
 (c) Frustrum, Floating, Moored Mine (case originally made for use as a mooring buoy)
 (d) Twin Can, Floating, Time Delay Fused Mine
 (e) Twin Metal Box Floating Mine
 (f) Variation of Soviet M&B Chemical Horn Contact Mine
 (g) Equipment Required for Emplacement of Watermines

b. Description of Items
 (1) Fuse of Mine M1A1 (CHICOM copy)

 (a) Description. This fuse is a CHICOM copy of the US fuse used in the old US AT mine, M1A1, and is almost identical in operation. The fuse body is metal color, and some appear to have been painted black (see Figure A-22 and A-23).
Figure A-22. Fuze AT Mine M151 (CHICOM Copy)
(c) Figure A-23 Fuze AT Mine M111 (CHICOM Copy)
(b) Characteristics:

1 Type. Mechanical

2 Markings. "Fuse MLA" on the side of the fuse body.

(c) Functioning. The fuze collar is attached to the sleeve by shear pins and the striker is held under spring tension by two locking balls which are set part way into holes in the sleeve, and under the level of the striker. Pressure on the pressure plate shears the pins allowing the collar to move down through aligning the holes in the collar with the locking balls. The locking balls come out and the spring driven striker is forced into the detonator.

(2) Chemical Delay Firing Device

(a) Description. This device consists of a metal fuse body, threaded at both ends, a cap (closure) with a stud in it, an acid vial, a detonator (a metal cup filled with heat sensitive explosive and covered with delay producing paper), and a non-electric blasting cap (see Figure A-24). When this device is employed with a LUU-3/B, no blasting cap is employed, and no stud is used in the cap due to the length of the device.

(b) Characteristics

1 Type. Chemical Delay

2 Shape. Cylindrical

3 Color. Brass

4 Filler. Acid and heat sensitive explosives

5 Markings. Delay time

(c) Functioning

1 In a satchel charge or mine the metal cap with the stud is screwed onto the fuse body breaking the acid vial. The acid dissolves the paper and comes into contact with the explosive, causing a reaction and detonation which initiates the non-electric blasting cap, and in turn the main charge.

2 In LUU-3/B, the fuze action is the same except that the acid vial is broken by hand, and the acid poured into the fuze and then the cap without the stud is screwed onto the firing device.

(d) Employment. This device has been utilized in satchel charges, and BLU-3/B, but could be used with almost any mine or sabotage device.
(c) Figure A-24 Chemical Delay Firing Device
(3) Chemical/Mechanical Release Sabotage Device

(a) Description. The device is in the configuration of a portion of a 75mm round sealed in a tin can (3.2 inches high and 75mm wide) with a pull wire extending from the side of the can (Figure A-25). However, if the device has been actuated, the can may appear to have only a hole in the side. This hole is large enough for a pull wire to have been pulled from the device to actuate the chemical release fuse. The fuse, and the section of 75mm round are placed into the tin can, and the space between the tin can and the round is filled with sections of metal rods, nails, and other miscellaneous fragmentation material. The can is sealed.

(b) Characteristics

1. Type and weight of the main charge. The charge consists of a 3.2 inch section of a 75mm round.
2. Fuse. Chemical/Mechanical release device.
3. The body is simply a section of the 75mm round inserted in a tin can with miscellaneous fragmentation materials.
4. Booster. N/A
5. Detonator. Concussion (percussion cap, .223 cal cartridge and a standard non-electric blasting cap.

(c) Functioning

The mechanical chemical release fuze is activated by a wire which acts as an initiator. The pulling of the release wire allows a striker to go forward, and crush a vial of acid encased in a .30 caliber cartridge case. Over a period of time, depending upon the strength of the acid and wire (in this case approximately 45 minutes), the acid erodes a wire which is attached to a release handle that holds a second striker in a cocked position. When the acid eroded wire breaks, the release handle is allowed to swing free. Once the swinging handle clears the cocked striker, the striker goes forward and hits an expedient percussion cap made from a .223 caliber (M16) cartridge. Attached to the primer of the cartridge is a standard non-electric blasting cap which detonates the explosive charge in the 75mm round section.

(d) Employment. This device is most effective for employment in a sabotage role.

(e) Disarming Techniques. Due to the extreme danger associated, and uncertainty with the chemical action on the release wire, this device should be destroyed in place.
(c) Figure A-25. Chemical/Mechanical Release Sabotage Device
(4) VC Chemical Actuated Mine

(a) Description. The mine is rectangular in shape and measures 6-3/4 inches by 4 inches by 1-7/8 inches. There is an enclosed compartment approximately 3/4-inch deep extending the full length on one side of the mine which is filled with metal fragments. There is also a hollow tube running lengthwise through the mine body which may or may not be utilized for adding a booster charge. This mine may be painted, but have been found as rusted iron (Figure A-26).

(b) Characteristics

1 Type of main charge. A mixture of red phosphorus, aluminum powder, charcoal, sugar, and organic ingredients.
2 Type of fuze. Chemical - a glass ampule filled with sulfuric acid.
3 Body. 1/8 inch thick sheet iron or light steel.
4 Booster. Varies
5 Detonator. N/A
6 Fuze Adaptor. Brass

(c) Functioning. When the exposed glass ampule is crushed, its acid contents flow into the filler generating sufficient heat to cause the main charge to detonate.

(d) Employment. This mine may be employed in an antipersonnel or antivehicular role.

(e) Disarming Techniques. If the exposed glass ampule is unbroken, remove the fuze adaptor.

(5) VC Bursting Chemical Grenade

(a) Description. The grenade is similar in configuration to the standard VC offensive hand grenade (Figures A-27, A-28, A-29, and A-30. It is manufactured from light sheet metal and the quality of construction seems to indicate a well developed manufacturing process. The grenade body is of four piece construction, and all joints are well soldered. Waterproofing and final sealing is accomplished with a material similar to beeswax. The grenade body contains an agent, and the wooden handle contains the ignition system.
Figure A-26. VC Chemical Actuated Mine

A-1-15

CONFIDENTIAL
CONFIDENTIAL

(c) Figure A-29 VC Bursting Chemical Grenade
A-1-18

CONFIDENTIAL
Figure A-30 VC Bursting Chemical Grenade

A-1-19.
CONFIDENTIAL

(b) Characteristics

1. Type of filler. A tear agent similar in physiological effects to CS.
2. Color. Fume is light green, and markings are in white.
3. Fuzo. Pull friction, powder train time.
4. Booster type. No booster is utilized but two pressed TNT booster pellets coated with wax are located in a booster well. The remainder of the cavity is filled with TNT.
5. Agent dissemination efficiency. About 15 percent.

(c) Functioning. The firing assembly is initiated by pulling on the pull friction wire which detonates the TNT.

(d) Homemade VC Antipersonnel Mine Booby Trap

(a) Description. This antipersonnel mine booby trap is olive drab in color, 2 inches in diameter, 4½ inches in overall height, and weighs approximately 2 pounds. It has an 18mm threaded fuse well (Figures A-31 and A-32).

(b) Characteristics

1. Type of main charge. Black powder
2. Type of fuse. Mechanical
3. Body. Cast iron
4. Booster. Black powder (refined)
5. Detonator. Percussion (no delay)

(c) Functioning

This antipersonnel mine booby trap is a locally manufactured item employing a pull-release type firing device with a no delay detonator. Detonation is actuated by a trip wire pulling out the safety pin. The safety pin releases the firing pin or striker in the top of the mine booby trap pushing it downward hitting the detonator cap thus causing an instantaneous detonation.

(d) Employment. As its designation implies, this device has been used in an antipersonnel role, being found in those areas subject to frequent personnel movement.

A-1-20

CONFIDENTIAL
(C) Figure A-31. Homemade VC Antipersonnel Mine Booby Trap

A-1-21
Guide Spring
Striker Guide
Striker pin
Safety pin
Detonating Cap
Cast Iron Body
Black Powder
Powder Activator

Figure A-32 Homemade VC Antipersonnel Mine Booby Trap

A-1-22

CONFIDENTIAL
(e) Disarming Techniques. As long as the safety pin is inserted the mine is in a neutral condition.¹

(7) Converted US Fragmentation Bomb, M83

(a) Description. This mine is a converted US fragmentation bomb M83. It is dark olive drab in color. The normal fuse well is extended by the drilling of a 3.8-inch hole to permit the use of a long booster/detonator. The remaining void around the booster/detonator is formed as a hemispherical shape or shaped charge, and the striker impact is wedge-shaped as opposed to pointed or rounded (Figures A-33 and A-34).

(b) Characteristics

1. Type of main charge. HE - TNT
2. Dimensions. See Figure A-33.
3. Fuze:
 a. Type. Pressure/pull combination
 b. Configuration. Cylindrical with appendages
 c. Location. Top of mine in normal fuze well of M83 bomb.
 d. Booster type. Primer detonator holder threaded into fuze with shaped charge booster/detonator slip-fitted with wax sealer.

(c) Functioning

1. Pressure cycle. Downward pressure on the pressure head causes the camming arm to withdraw the striker retaining fork from the slot in the striker. This action allows the locked striker to strike the primer detonator, firing the heat sensitive booster/detonator thus detonating the main charge.

2. Pull cycle. A trip wire is attached to the striker retaining fork. Pull is applied to this striker retaining fork causing it to be withdrawn from the slot in the striker. This action allows the cocked striker to strike the primer detonator, firing the heat sensitive booster/detonator, detonating the main charge.²

(d) Safety features. There are provisions for a safety pin to be inserted into the striker retaining fork, and the camming arm, precluding accidental functioning of the fuze.

¹Reference 21
²The striker retaining support pin and spring act as a guide preventing the striker retaining fork from jamming. The fuze can be used simultaneously as a pressure and/or pull fuze and could be used without the pressure head allowing it to be used as a straight pull fuze.
(c) Figure A-33 Converted US Fragmentation Bomb, M83

CONFIDENTIAL
(8) Directional Fragmentation Mines

(a) Directional Fragmentation Mine MDH2

1. Description: The mine is rectangular in shape, made of thin sheet metal, dark green or olive drab in color, and contains approximately 2.5 pounds of TNT, and 345 steel rods. The front of the mine is concave with three flat surfaces. The fuze well is in the bottom of the mine and a crude sighting device is on top. The cut steel rods are in a single layer under the front metal covering (Figures A-35 and A-36).

2. Characteristics

 a. Type and weight of main charge. Cast TNT weighing 1.5 kilograms.

 b. Type of fuze. N/A

 c. Body. Thin sheet metal

 d. Booster. TNT, Tetryl (varies)

 e. Detonator. Standard electric or non-electric blasting cap.

 f. Dimensions. 19 centimeters by 12 centimeters by 5.5 centimeters (7 3/4 inches by 4 3/4 inches by 2 1/8 inches).

 g. Overall weight. Three kilograms

(b) Directional Fragmentation Mine Similar to the MDH2

1. Description. The directional fragmentation mine is also rectangular in shape, but is curved to present a flat concave surface toward the target, and is dark green in color (Figures A-37 and A-38). The mine is supported by two sets of two folding legs. The fuze well is located in the center of the back of the mine.

2. Characteristics

 a. Type and weight of main charge. Cast TNT (1.4 kg)

 b. Type of fuze. N/A

 c. Body. Sheetmetal

CONFIDENTIAL
Figure A-35. Types of Directional Mines
A-1-27

CONFIDENTIAL
Figure A-37. VC Directional Mine Similar MDH2

A-1-29

CONFIDENTIAL
FUNCTIONAL MINE MDH3:

1. Description. This mine is circular, dark green in color, and is usually supported by an adjustable stand (Figures A-35 and A-39).

2. Characteristics

- Type and weight of main charge. Cast TNT weighing approximately 1.8 kilograms (4 pounds).
- Type of fuze. N/A
- Body. Sheet metal
- Booster. TNT, Tetryl (varies)
- Detonator. Standard electric or non-electric blasting cap.
- Dimensions. Approximately 20 centimeters (7.78 inches) in diameter.
- Overall weight. Approximately 5.5 kilograms (12 pounds)

(d) Directional Fragmentation Mine MDH5

1. Description. This mine is circular, and black or olive drab in color. It, too, is usually supported by an adjustable stand (Figure A-35).
Figure A-39. Directional Fragmentation Mine, MDH3
2 Characteristics

a Type and weight of main charge. Cast TNT weighing approximately 2.8 kilograms (6 pounds).

b Type of fuze. N/A

c Body. Sheet metal

d Booster. TNT, Tetryl (varies)

e Detonator. Standard electric or non-electric blasting cap.

f Dimensions. Approximately 24 centimeters (9 1/4 inches in diameter).

g Overall weight. Approximately 7 kilograms (15 pounds)

2 Functioning and Employment. Standard for fixed directional mines.

e Directional Fragmentation Mine M198

1 Description. This mine is circular, and dark grey, black or olive drab in color. It is usually supported by an adjustable stand (Figures A-35 and A-40).

2 Characteristics

a Type and weight of main charge. Cast TNT weighing approximately 3.7 kg (8 pounds).

b Type of fuze. N/A

c Body. Sheet metal

d Booster. TNT, Tetryl (varies)

e Detonator. Standard electric or non-electric blasting cap.

f Dimensions. Approximately 29 centimeters (11 3/4 inches)

g Overall weight. Approximately 9.2 kilograms (20 pounds)

2 Functioning and Employment. Standard for fixed directional mines.

A-1-33

CONFIDENTIAL
(0) Figure 4-40. Directional Fragmentation Mine, MDH8

CONFIDENTIAL
(f) Directional Fragmentation Mine M261C

1 Description. This mine is circular, and is olive drab, dark gray or black in color. It is usually supported with an adjustable stand. Many different mines of the fixed directional type are inscribed with the inscription M261C (Figure A-41).

2 Characteristics:
 a Type and weight of main charge. Cast TNT weighing 4.5 kilograms.
 b Type of fuze. N/A
 c Body. Sheet metal
 d Booster. TNT, Tetryl (varies)
 e Detonator. Standard electric or non-electric blasting caps.
 f Dimensions. Approximately 30 centimeters (12 inches)
 g Overall weight. Approximately 9.5 kilograms
 h Width. Approximately 6-8 centimeters
 i Fragments. 420 to 450 steel rods (measuring approximately 12mm x 12mm)

3 Functioning and Employment. Standard for fixed directional mines.

(g) Directional Fragmentation Mine M26 H-40

1 Description. The M26 H-40 directional fragmentation mine resembles the US M18A1 claymore mine. This mine is rectangular in shape, and curved to form a convex surface designed to be faced toward the enemy. There are two fuze wells, one in the center of the concave side and one on the side. It is usually light green in color (Figure A-42).

2 Characteristics
 a Type and weight of main charge. Cast TNT weighing 800 grams.
 b Type of fuze. Electric or non-electric blasting cap.
Figure A-41. Directional Fragmentation Mine, MDHLO

CONFIDENTIAL
(C) Figure A-42. Directional Fragmentation Mine, MDH C-40

CONFIDENTIAL
Casing. The casing is sheet metal with three folding legs or two "D" rings on the top. (Note: the US M1841 mine casing is made of fiberglass)

There are round steel rods measuring 3/16 inches in diameter, and ranging from 1/8 inch to 1/2 inch in length which, are imbedded in a tarlike matrix.

Booster. Tetryl in each fuse well.

Detonator. Electric blasting cap (command), pressure electric.

Length. 22.8 centimeters (9 inches);

Width. 7.9 centimeters (3 1/9 inches)

Depth. 3.8 centimeters (1 1/2 inches)

Weight. 1.66 kilograms (3.65 pounds)

(9) Locally Manufactured Mines and Explosive Devices

(a) Homemade VC Antipersonnel Mine

Description. This antipersonnel mine is black, cylindrical in shape measuring 5 1/8 inches high, 2 1/2 inches in diameter (Figures A-43, A-44 and A-45).

Characteristics

Type of main charge. Ammonium nitrate

Fuze. Mechanical pressure

Body. Cast aluminum, lined with a coiled steel spring for additional fragmentation.

Booster. Paperwrapped charges of black powder.

Detonator. Primer cap of a 12.7mm cartridge

Functioning

This antipersonnel mine employs a pressure type firing device using a no-delay detonator. Detonation is activated by the weight of an individual stepping on a two-inch circular pressure plate. The firing device has an anti-creep spring between the pressure plate, and the head of
Figure A-43. Homemade VC Antipersonnel Mine

CONFIDENTIAL
(Not to Scale)

(c) Figure 4-45 Homemade VC Antipersonnel Mine

A-1-41

CONFIDENTIAL
the fuze. The striker pin was designed to strike a primer cap for a 12.7mm cartridge in which the head had been filed to permit easier penetration for the striker pin, thus causing detonation of the black powder booster, and then the ammonium nitrate charge.

4 Employment. This mine can be used in the standard antipersonnel roles along trails, rest areas, and the side of the road.

(b) VC AT Mine

1 Description. The mine and fuze appear to be of local manufacture, and of relatively good quality. This mine is similar to the US AT Mine Fuze M603 (Figures A-46, A-47, and A-48).

2 Characteristics

a Configuration. Cylindrical

b Color. Olive drab with white markings

c Type and weight of main charge. High explosive (type unknown) weighing approximately 18 pounds.

d Fuze

(1) Type. Pressure

(2) Configuration. Cylindrical, stepped

(5) Location. Top center of mine

(4) Booster type. Cast into the mine

(5) Material. Aluminum, copper

e Safety devices. Three stab crimps in the pressure cap.

2 Functioning. The fuze is placed in the mine which has been buried in the ground to a depth of approximately 4½ inches. The mine and fuze are encased in a light plastic material which acts as a waterproofing agent. Two sticks are often placed over the fuze in an "X" pattern to preclude detonation by an individual soldier. When a heavy load crosses the mine, the fuze cap is forced down on the primer which detonates the blasting cap on the base of the fuze, which in turn detonates the main charge. Pressure needed to detonate this mine configuration is approximately 300 pounds.

3Reference 22

A-1-42
Figure A-46. VC Antitank Mine

CONFIDENTIAL
WOODEN SHIPPING PLUGS

10 7/16"

(TOP VIEW)

10 3/4"

(BOTTOM HELD IN PLACE USING SOLDERED SEAMS AND WAX)

(c) Figure A-47
VC Antitank Mine

CONFIDENTIAL
CONFIDENTIAL

BASE COLOR OF CAP
OD W/WHITE MARKING

COPPER PRESSURE CAP

SMALL ARMS PRIMER

FLASH CHANNEL

ALUMINUM BODY

TAR SEAL

NON-ELECTRIC BLASTING CAP

(c) Figure A-48 VC Antitank Mine

CONFIDENTIAL
(c) Explosive Charge Designed to Resemble a Concrete Building Block

1 Description. Explosive charge is 19 inches wide, and 4½ inches high, is grey, and similar in size, shape, weight, and markings, to that of an ordinary rectangular building block, with the exception of four rectangular blocks that are 1-bedded in the building block itself. Each of these four blocks has a hole in its center (Figure A-49).

2 Characteristics

a Type and weight of main charge. The main charge consists of TRITONAL (60/40) weighing 30 pounds.

b Body. The body is simply TRITONAL molded into the shape of a building block.

c Booster. The booster consists of four 200-gram blocks of TNT, which are employed in pairs and molded in the TRITONAL itself. In the center of each of these blocks is a hole which serves as a fuze well.

d Detonator. Standard electric or non-electric blasting cap

3 Functioning

a Initiating action. Standard electric or non-electric system

b Firing device internal action. N/A

c Anti-handling devices. None have been encountered to date.

4 Employment

a Handling. The regular safety precautions should be taken to avoid predetonation.

b Individual laying techniques. These charges are employed in those locations in which building blocks might be utilized. Some of the charges have been found near bridge foundations, with six stacked charges atop each other. They also may be substituted for a section of road curbing, especially at bus stops where numerous personnel, and vehicles congregate. The charges by their construction are camouflages.

c Countermeasures against removal. N/A
Figure A-49. Explosive Charge Designed to Resemble a Concrete Building Block

CONFIDENTIAL
CONFIDENTIAL

4 Disarming techniques. The disarming of this explosive charge should be accomplished according to the regulations prescribed for standard electric, and non-electric firing systems.

(d) Modified BLU-3/3 Satchel Charge

1 Description. This explosive charge is rectangular in shape measuring 12 inches by 12 inches by 4 inches in height. It is grey in color, and weighs approximately 30 pounds. Inserted in four tin cans are four modified BLU-3/B bomblets (see Figure 50). It is then wrapped in burlap and wire, measuring 14 inches x 14 inches x 5 inches.

2 Characteristics

a Type and weight of main charge. TRITOCAL (80/20) weighing approximately 30 pounds.

b Type of fuse. N/A

c The body is TRITOCAL molded into the shape desired in this instance rectangular.

d Booster. A TNT block is molded into the main charge.

e Detonator. Electric or non-electric blasting cap.

3 Functioning. This charge has been designed to fire with either standard electric or non-electric firing systems. A booster block of TNT is utilized to detonate the main charge, TRITOCAL, subsequently detonating the modified BLU-3/B bomblets. There are also broken blocks of TNT embedded throughout the TRITOCAL. It should be noted that the modified BLU-3/B bomblets are merely added for their fragmentation effect, and are detonated only upon detonation of the main charge, i.e., the BLU-3/Bs have no separate fuzeing system.

4 Employment. This particular mine configuration is quite unique and no substantial information has yet been reported considering its employment. Most likely it has been employed in both an antivehicular, anti-personnel, and anti-installation capacity.

5 Disarming Techniques. The methods used to disarm this charge depends upon the firing system chosen for that particular configuration.

(e) Box mine, wood

1 Description. The wooden box is rectangular 12 inches by 16 inches in height. This box was originally used to ship explosive in it. It has one side marked with 17E-8-K-75. Each box is sealed with wire and lead through the cover and sideboard (Figure A-50).

1 Reference 23

A-1-48
Figure A-50. Modified EIU-3/8 Satchel Charge

A-1-49