Our objective is to improve manning for Reserve and Guard components in order for these units to be able to respond immediately and effectively. While our officer personnel strength is encouraging at this time, we must continue to particularly stress the recruitment of highly qualified enlisted personnel. We are now counselling all personnel, prior to their leaving the active forces, concerning their opportunities in the Air Force Reserve and National Guard.

We feel that we are making significant progress concerning both recruiting and equipment modernization. In FY 73, the Air Force Reserve will reach a strength level of 53 units, including 13 MAG C-141 and one C-9 associate squadrons. We will activate three new Reserve units and convert 7 of our flying units to more modern aircraft. This will make a total of 73% of our units converted since the beginning of FY 71.

With respect to the Air National Guard, in FY 73 we will convert 10 additional units to more modern aircraft, making 60% of our Guard units that will have been converted during fiscal years 71 through 73. These steps will better enable the Guard and Reserve components to serve as the primary source of any future rapid augmentation of the active forces, a key objective of the new strategy now being implemented.
II. WEAPONS PROCUREMENT

The Air Force is structuring its procurement and R&D efforts in a way that will provide steady modernization of its forces over the long run. Since we cannot be certain in advance about either exact military requirements or the feasibility of particular development programs, we must maintain flexibility in our planning. We are striving to achieve this sort of flexibility through prototype programs that will provide options that can be picked up in the future, if necessary.

TABLE V shows the full range of our programs from development prototypes through deployments that have already received necessary funding and will be completed this year. We believe we have a reasonable effort on both strategic and general purpose forces, as well as a suitable flow of new developments and deployments of the various types of systems.

Aircraft Procurement

We are asking for a total buy of 251 aircraft, of which only 73 are for the U.S. Air Force (we are buying one small trainer for Laos, 57 F-5Es for South Vietnam; and 120 helicopters for the U.S. Army as replacements for those turned over to the Vietnamese Air Force). These 73 aircraft for the U.S. Air Force include limited numbers of the F-15 and AWACS, which I will discuss.
TABLE V

SUMMARY OF MAJOR WEAPON SYSTEM PROGRAMS

<table>
<thead>
<tr>
<th>ADVANCED PROTOTYPE PROGRAMS</th>
<th>IN DEVELOPMENT</th>
<th>IN PRODUCTION</th>
<th>RECENTLY DEPLOYED OR UNDERGOING DEPLOYMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delivery Systems</td>
<td>Sensing & Control</td>
<td>Weapons</td>
</tr>
<tr>
<td>Strategic</td>
<td>B-1</td>
<td>Airborne Command Post</td>
<td>SRAM</td>
</tr>
<tr>
<td></td>
<td>SCAD (Decoy)</td>
<td></td>
<td>FB-111</td>
</tr>
<tr>
<td>Light Weight Fighter</td>
<td>F-15</td>
<td>MAVERICK</td>
<td>Gunships</td>
</tr>
<tr>
<td>STOL Transport</td>
<td>A-X</td>
<td>A-7</td>
<td>G-5</td>
</tr>
</tbody>
</table>
in conjunction with our R&D programs. I will now review the status of the following procurement programs: the P-111, C-5, F-5E International Fighter, and the Advanced Airborne Command Post. Table VI outlines the major aircraft programs.

TABLE VI

<table>
<thead>
<tr>
<th>Aircraft Procurement</th>
<th>FY 71</th>
<th>FY 72</th>
<th>FY 73</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-7D</td>
<td>(88)</td>
<td>(97)</td>
<td>(97)</td>
</tr>
<tr>
<td>P-111A/D/E/F</td>
<td>(12)</td>
<td>(12)</td>
<td>(12)</td>
</tr>
<tr>
<td>F-5E</td>
<td>(8)</td>
<td>(21)</td>
<td>(57)</td>
</tr>
<tr>
<td>F-15</td>
<td></td>
<td>(30)</td>
<td>(421.6)</td>
</tr>
<tr>
<td>C-5</td>
<td>(544.4)</td>
<td>(299.1)</td>
<td>(207.6)</td>
</tr>
<tr>
<td>AWACS</td>
<td></td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>Adv. Airborne</td>
<td></td>
<td>(4)</td>
<td>(2)</td>
</tr>
<tr>
<td>Command Post</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Tactical</td>
<td>(153)</td>
<td>(60)</td>
<td>(218.1)</td>
</tr>
<tr>
<td>Aircraft</td>
<td>(153)</td>
<td>(60)</td>
<td>(218.1)</td>
</tr>
<tr>
<td>Misc. Sp.: Acfts.</td>
<td>(69)</td>
<td>(14)</td>
<td>(27)</td>
</tr>
<tr>
<td>Helicopters</td>
<td>(300)</td>
<td>(14)</td>
<td>(120)</td>
</tr>
<tr>
<td>Modifications</td>
<td>(538.0)</td>
<td>(563.7)</td>
<td>(465.6)</td>
</tr>
<tr>
<td>Spares/Parts</td>
<td>(498.4)</td>
<td>(397.9)</td>
<td>(504.1)</td>
</tr>
<tr>
<td>Support</td>
<td>(642.9)</td>
<td>(789.6)</td>
<td>(237.7)</td>
</tr>
<tr>
<td>Total (TOA)</td>
<td>(624)</td>
<td>(205)</td>
<td>(251)</td>
</tr>
<tr>
<td>Aircraft for</td>
<td></td>
<td>(205)</td>
<td>(251)</td>
</tr>
<tr>
<td>Allies/US Army</td>
<td>(475)</td>
<td>(178)</td>
<td></td>
</tr>
<tr>
<td>Aircraft for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USAF</td>
<td>(149)</td>
<td>(181)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(73)</td>
</tr>
</tbody>
</table>

*Includes FY 72 Supplemental.
Despite past problems with the F-111, our rapidly accumulating operational experience is proving this aircraft to be a very important addition to our force. We now have over 145,000 flight hours on the aircraft and are quite satisfied with the capabilities being demonstrated by our operational units. All F-111Es have been delivered, and the F-111B wing at Upper Heyford, England is now operationally ready and supporting our NATO commitment. All of the F-111As and FB-111s have been delivered and are combat ready. The special structural cold proof load test program has been completed for all deployed F-111s and has been integrated into the remainder of the production program.

The F-111F is the last of the series. The 12 aircraft which were added to the contract in November 1971 will be delivered by December 1973. The FY 73 budget request includes $160.3 million for 12 additional F-111Fs and $5 million to complete Category I and II flight tests.

I would like to add that the Government of Australia announced in December that they will accept delivery in 1973 of the 24 F-111Cs built for them.
Last year I addressed the difficulties in developing the Mark II avionics system for the F-111D. Seven F-111Ds with the Mark II have now been delivered to operational units at Cannon AFB, New Mexico. We have relaxed specifications for some of the less critical back-up modes of operation, but flight tests show that its present performance provides a greatly improved capability for tactical missions. Our problem is to keep the procurement cost of this system from increasing still further, and to improve reliability in order to reduce maintenance costs.

The Mark II has a better capability for detecting small tactical targets, is effective against moving targets, and reduces navigation error by one-half. Also the advanced cockpit display simplifies crew tasks.

The C-5 Heavy Logistics Transport

We have doubled the C-5 operational force during the past year, and 42 aircraft now operating on trans-Atlantic and trans-Pacific missions. Additionally, six are allocated for initial training of aircrews, and six are in test status. With the C-5 we have the capability to airlift a mechanized or armored division overseas with virtually all of its heavy equipment in a ready-to-go condition. The C-5s, C-141s and the Civil Reserve
Air Fleet provide us with the ability to rapidly deploy a balanced force to any portion of the globe.

Last year we executed a new contractual arrangement with Lockheed under which they accepted a $200 million fixed loss. This agreement eliminated litigation then outstanding between Lockheed and the Government and provided a workable basis for management of the C-5 contract by the Air Force.

Remaining problems are chiefly related to the static strength and fatigue life of the aircraft. The possibility of installing a new wing to increase static strength was rejected because of the cost involved. Alternatives such as special flight management, including reduced load factors and payloads; design changes; and incorporating a Lift Distribution Control System are being examined as means of extending the operational life of the C-5.

As a result of the C-5's structural problems, we have established a review team to conduct an in-depth assessment of the entire airplane structure. This effort should require one year to complete, but it should provide us with a clearer indication of the structural life expectancy of the aircraft, identify the most cost effective approach to future modification efforts and indicate operational procedures to conserve the life of the aircraft.
In view of these structural problems, as well as the
reduced airlift requirements for Southeast Asia, we are not
operating the C-5 at initially programmed rates. However,
the C-5 is capable of meeting its primary purpose, which is
wartime strategic airlift. And the peacetime use of these
aircraft will be suitable to maintain combat readiness, while
conserving their operational life. Another airlift option
We are requesting $9207.6 million in FY '73 to cover
current year unfunded deficiencies. It is our intention to
buy out the program with this amount.

F-5E, International Fighter
The F-5E International Fighter is designed to support
the aims of the Nixon Doctrine in assisting our allies to
shoulder more of their own defense. The F-5E will be used
initially to improve the capabilities of South Vietnam as
part of the Vietnamization program. We are expediting
procurement of this aircraft to provide an early air-defense
capability for the South Vietnamese armed forces.

The International Fighter is of simple design and will
be easy to maintain. It is an outgrowth of the older twin
jet Northrop F-5A. Its primary role will be to provide an
air-superiority capability for our allies, but it will have
a secondary role of ground support.
We are requesting $92.7 million for procurement of 57 aircraft plus an additional $7.9 million for spares, and $17.7 million for development.

Advanced Airborne Command Post

Our FY-73 budget request also includes funds for procurement of a new Advanced Airborne Command Post to be used by the National Military Command System and Strategic Air Command. The present EC-125s do not have the growth potential to accommodate improved communications and data processing equipment, and the needed battle staff. General Ryan will discuss this subject in more detail.

The FY-72 supplemental request includes $113.8 million for four 747 aircraft, plus $6 million for R&D. One of these aircraft will be used as a test bed, and the other three will be equipped initially with the EC-125 communication and command and control package and will be deployed in 1973.

This is an interim measure to improve the National Military Command System capabilities.

We are asking $103.8 million in FY-73 for the procurement of two advanced aircraft, and $26 million for research and development. Our R&D efforts will be directed primarily toward initiation of designs for the command and control equipment and airborne modifications. The total
program includes seven aircraft which will be fully deployed during 1975.

In a related program we must develop a facility to test Electromagnetic Pulse (EMP) effects on aircraft systems. These are effects which could result from a nuclear explosion. The FY 72 Supplemental contains $9 million for the facilities and for determining EMP hardness design criteria. There is an additional $10.5 million in the FY 73 R&D budget request. This capability will enable us to test the Airborne Command Post and other strategic systems to insure that they could function properly in a nuclear environment.

Missile Procurement

Our missile procurement request is summarized in Table VII. MINUTEMAN III is our largest missile procurement program. With the Mark 12 multiple reentry system, a single MINUTEMAN III missile could attack more than one target, with a major improvement in penetration capability. This strengthens our deterrence by complicating enemy defenses and insuring our chances of having a credible retaliatory capability in the event of an attack against our strategic forces. Over half of our ICBMs will be MINUTEMAN IIs by the mid-1970s, with the remaining being improved MINUTEMAN IIs and a small number of TITAN IIs.
TABLE VII

Missile Procurement
(Millions of dollars)

<table>
<thead>
<tr>
<th></th>
<th>FY 71</th>
<th>FY 72</th>
<th>FY 73</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINUTEMAN III Procurement</td>
<td>$497.8</td>
<td>$471.1</td>
<td>$419.3</td>
</tr>
<tr>
<td>NM Force Modernization</td>
<td>84.8</td>
<td>270.0</td>
<td>273.6</td>
</tr>
<tr>
<td>SHRIKE</td>
<td>9.7</td>
<td>12.1</td>
<td>10.8</td>
</tr>
<tr>
<td>Maverick</td>
<td>3.1</td>
<td>77.9</td>
<td>61.2</td>
</tr>
<tr>
<td>SRAM</td>
<td>112.9</td>
<td>222.0</td>
<td>202.5</td>
</tr>
<tr>
<td>SPARROW</td>
<td></td>
<td></td>
<td>19.5</td>
</tr>
<tr>
<td>SIDEWINDER</td>
<td></td>
<td></td>
<td>14.3</td>
</tr>
<tr>
<td>Target drones</td>
<td>11.0</td>
<td>7.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Modifications</td>
<td>100.7</td>
<td>53.8</td>
<td>43.9</td>
</tr>
<tr>
<td>Spares and Parts</td>
<td>47.7</td>
<td>43.6</td>
<td>46.7</td>
</tr>
<tr>
<td>Other Support</td>
<td>624.4</td>
<td>525.7</td>
<td>672.8</td>
</tr>
<tr>
<td>Total (TOA)</td>
<td>$1,492.1</td>
<td>$1,683.7</td>
<td>$1,772.3</td>
</tr>
</tbody>
</table>

The first wing of MINUTEMAN III missiles was turned over to the Strategic Air Command last December, seven weeks ahead of schedule, and with a projected savings to the Air Force of about $4 million. We are requesting $419.3 million for MINUTEMAN III procurement and we are also asking $273.6 million to continue
the MINUTEMAN force modernization program. This includes modifying the MINUTEMAN I silos to accommodate MINUTEMAN II and III missiles and improving the prelaunch survivability of the entire MINUTEMAN force.

Turning to nuclear missiles for our strategic aircraft, we are programming the Short Range Attack Missile (SRAM) for the B-52 and FB-111. And, if we decide to deploy the B-1, it will also use the SRAM. This air-to-ground missile is designed to suppress enemy defenses as well as attack primary targets. It is a small, high velocity missile capable of a low trajectory and will be difficult to defend against.

The final scheduled launch in the SRAM development test program was accomplished last July. Some 38 firings were completed during these tests and all specifications were met or exceeded. We expect to have a SRAM capability on some of our B-52s and FB-111s this calendar year.

In the tactical area, we have completed Category II testing of the Maverick air-to-ground non-nuclear missile. This weapon is designed for use on the A-7D and F-4 and will be compatible with the A-X. It has television homing guidance and the warhead will be capable of penetrating heavy armor and triple reinforced concrete. It will be effective
against hard targets such as tanks and field fortifications and can also be used effectively against SAMs, radars, and mobile missiles.

Category II testing was completed in September and we achieved hits on nearly all of the firings, with an average error of only a few feet. We have now begun the first phase of Category III tests, which will run until May of 1972.

We will also conduct joint tests with the Army to further validate the Maverick performance under various operational conditions before exercising Option B production in October of 1972. The FY 73 budget includes $61.2 million for missile procurement and $4.9 million for initial spares.
III. RESEARCH AND DEVELOPMENT

Our research and development programs insure that we will have sufficient options to meet the threats which may arise in the future. The Air Force R&D budget request of $3.2 billion in FY 73 is about 35% less in purchasing power than the Air Force FY 64 R&D budget, just prior to the Vietnam war.

In order to meet our requirements within this budget squeeze, we are improving our R&D management. Perhaps most important, we are on guard against "gold plating." We cannot afford to spend large sums of money on design features that are "nice," but not absolutely essential to better combat performance. Then we are insisting on early hardware demonstrations with improved testing and evaluation. And we are making tough decisions, trading off performance, cost, and schedules as necessary to make available the best possible weapons alternatives for the resources expended.

In carrying out these policies, we have given primary responsibility to our program directors, who have direct access to the top leadership of the Air Force. In addition, we are giving particular emphasis to increased involvement of our Laboratories in all phases of the R&D process.
TABLE VIII shows our FY 73 RDT&E request along with a breakout of major programs and a comparison of the same data for the previous two years.

<table>
<thead>
<tr>
<th>TABLE VIII</th>
<th>Research and Development (Millions of $, Funds in parentheses show funding for major systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FY 71</td>
</tr>
<tr>
<td>Aircraft</td>
<td></td>
</tr>
<tr>
<td>B-1</td>
<td>$767.1</td>
</tr>
<tr>
<td>(75.0)</td>
<td>(370.3)</td>
</tr>
<tr>
<td>F-15</td>
<td>(349.5)</td>
</tr>
<tr>
<td>A-X</td>
<td>(27.9)</td>
</tr>
<tr>
<td>Advanced Prototypes</td>
<td></td>
</tr>
<tr>
<td>Missiles</td>
<td>691.5</td>
</tr>
<tr>
<td>Minuteman</td>
<td>(270.2)</td>
</tr>
<tr>
<td>Astronautics</td>
<td>429.7</td>
</tr>
<tr>
<td>Ordnance & Combat Vehicles</td>
<td>89.2</td>
</tr>
<tr>
<td>Other Equipment</td>
<td>374.6</td>
</tr>
<tr>
<td>AWACS</td>
<td>(87.0)</td>
</tr>
<tr>
<td>Defense Suppression</td>
<td>(14.0)</td>
</tr>
<tr>
<td>Military Sciences</td>
<td>141.9</td>
</tr>
<tr>
<td>Management & Support</td>
<td>333.2</td>
</tr>
<tr>
<td>Total (TDA)</td>
<td>$2,927.2</td>
</tr>
</tbody>
</table>

* Includes $45 million for Lightweight Fighter and $46 million for medium STOL transport.
** Includes FY 72 supplemental
R&D expenditures in the missile field continue to show a decrease. This is primarily due to progress in the MINUTEMAN program. Our primary efforts here involve work on a remote retargeting capability for MINUTEMAN III, continued development of the silo modifications to insure prelaunch survivability, and a new instrumentation package to get a more precise measurement of MINUTEMAN III guidance system performance. These programs are adequate for making necessary ICBM improvements in the next few years. We must, however, insure that our technology will remain strong enough to provide long-term improvements which may be needed in the 1980s.

With respect to aircraft development, we are continuing four major programs: the B-1, the F-15, the A-X, and the AWACS. And we have initiated advanced prototype development of a Lightweight Fighter and a medium STOL transport.

The B-1 Strategic Bomber

The deterrence of strategic war depends on convincing any would-be attacker that effective retaliation would be certain. The United States continues to deter aggression by maintaining three different types of retaliatory forces: land-based missiles, sea-based missiles, and long range bombers. An enemy might be able to develop ways of neutralizing one or even two of these forces, but it is extremely unlikely that he could find methods of negating all three at the same time.
We are proceeding with the development of the B-1 to be certain that we can maintain the bomber portion of our deterrent capability in the 1980s.

The B-52 was designed in the late 1940s and built in the 1950s and early 60s. While we have continually upgraded the B-52, we will not be able to maintain the mission capability of this aircraft indefinitely. To date, we have spent about $2.7 billion dollars on B-52 modifications. And even if we were to spend larger sums for beefing up the B-52 structure and retrofitting it with more efficient engines, its ability to survive an enemy attack and penetrate the air defenses expected during the 1980s would be questionable.

Of course, the FB-111 is also an important element of our bomber force, but it cannot fulfill the strategic bomber mission by itself. Against typical target systems it would take six times as many FB-111's as B-1's and require six times the tanker support. And due to its relatively small size, there is little growth potential for penetration aids in the FB-111.

As you know, North American Rockwell was selected as the prime contractor for the B-1. And, General Electric won the engine contract. Each is working under a cost plus incentive fee contract in the development phase.
Although the B-1 contracts have been in effect for less than two years, we are encouraged by the progress we have made to date. The Preliminary Design Review, the first major milestone, was completed on schedule last July. The Mockup Review, considered the second milestone, was completed on schedule in October. Also, over 10,000 wind tunnel test hours for design validation have been completed. And we are well along with engine tests necessary for preliminary flight rating. Present B-1 contracts call for design and fabrication of three development aircraft, plus 27 flight rated engines.

In September the Request for Proposal for the B-1 avionics contract was released. We plan to make maximum use of existing components and proven technology. Newly developed components will be used only where needed to meet the basic requirement.

Our FY 73 request of $444.5 million for the B-1 program will help us complete Design Validation and Critical Design Review. These steps, coupled with the completion of engine inlet wind tunnel tests, will enable us to make full release of engineering drawings and specifications. Also, we expect to have the first aircraft in final assembly during FY 73.

Our goal for first flight of the B-1 is April 1974. We will then test the system for a full year before making the
production decision. If we decide to go ahead with production, an
initial operational capability could be reached in the late 1970s.

F-15 Air-to-Air Fighter

The F-15 is being developed to provide all weather air-to-air
combat capability during the post-1975 time frame. McDonnell
Douglas was awarded the prime contract for the F-15 and Pratt
and Whitney won the engine contract. Hughes was selected to
build the attack radar system after a fly-off competition.

We have made careful studies to weigh the relative
performance and cost trade-offs. For example, a simplified
structural design was selected and we deleted those avionics
requirements which did not specifically contribute to the
aircraft's air-to-air capability. Also, the AIM-82 missile
was cancelled in favor of a much simpler advanced SIDEWINDER.
All of these adjustments were made to achieve the desired
degree of capability within the limits of technology and
acceptable costs.

We are using cost plus incentive fee contracts for the
development portion of the program and a fixed price with
successive targets for the production phase. This program was
the first to implement the demonstration milestone concept in
system acquisition, and we are pleased at the progress we
have achieved to date.
The first four milestones have been met on time or ahead of schedule: Preliminary Design Review in 1970 and the last three -- the Radar Contractor Selection, the Critical Design Review of engine and airframe, and the Avionics Equipment Development Review -- during the past year. Also, approximately 95% of the contracts for components and subsystems development have been released.

As part of the F-15 structural integrity program, McDonnell Douglas has completed 16,000 hours of fatigue tests of a stabilator, which is the rotating elevator back of the tail. These tests would amount to four operational lifetimes of the production article. This was followed by static testing of the same stabilator to 200 percent of design load without failure. In November, however, after 4,000 hours of fatigue testing, we experienced a failure in the outboard wing section of the wing subsystem test article. We identified the cause and took corrective measures which enabled us to complete the fatigue tests to the full four lifetimes of the test article. The same article is now undergoing static tests. Component testing confirms that the failure was due to a peculiar test overload condition which resulted in repeated buckling of the shear webbs. We have increased the thickness of the shear webb and corrected the test loading condition.

The purpose of these thorough-going structural tests early in the program is to identify weaknesses in the design.
and to make corrections before extensive retrofitting is required. The first flight is scheduled for mid-1972.

Pratt and Whitney has conducted over 3,000 hours of engine running time, completing the Preliminary Flight Rating Tests. The engineering radar model is currently being fabricated to final pre-production configuration. Following initial integration and flight testing in a WB-66, the avionics will be further validated in an F-15 test aircraft.

With respect to the cost of engine development programs, increases have resulted from the Navy's decision not to exercise its initial production option and follow-on requirements for the F-14B engine. This decision increased the Air Force F-15 RDT&E costs by $26.3 million in order to absorb overhead and tooling costs that would have been charged to the Navy. Our FY 72 budget request includes $20.6 million of this increase with the remainder to be included in FY 74 funds. We estimate that the total increase in the engine program cost to the Air Force, including procurement, will be somewhat over $300 million due to the Navy's decision.

Our FY 73 budget request includes $454.5 million for the F-15 development program plus $421.6 million for procurement of the first 30 production aircraft. The ultimate cost for our planned buy is expected to be about $100 million per aircraft.

In FY 73 we will acquire actual flight test experience on the Category 3 test aircraft. After seven months of testing, we
expect to be ready for a production decision in February 1973. And if a go-ahead is given we could have an initial operational capability for the first squadron in the mid-1970s.

A-X Close Air Support Aircraft

Development work on two competitive prototype close air support aircraft is progressing toward our goal of first flight in June. Fairchild Industries and Northrop Corporation were chosen to develop two prototype aircraft each under fixed price contracts. We hope to begin a competitive fly-off in October of this year. During these tests the Air Force plans to fly about 120 hours on each of the two competitive systems. After complete evaluation of the performance characteristics of the aircraft and a detailed review and appraisal of each contractor's development and production proposals and cost estimates, we will decide which prototype is the best and whether to initiate the full-scale development program.

Our objective is to develop an aircraft that will be:

1. optimized to perform close air support with high survivability;
2. relatively inexpensive; and
3. easy to maintain in an austere environment. To minimize development and procurement costs, we are using current technology and available equipment wherever possible.

The design specifications call for the A-X to provide improved close-in support under low ceilings and poor visibility
conditions -- where our present higher performance aircraft are less effective. The A-X will also be designed with a 1,000 foot take-off capability and will be able to loiter in the battle area for long periods of time when necessary.

For high survivability, this aircraft will have redundant systems, self-sealing fuel tanks which contain foam to suppress fire or explosions and armor plating for the cockpit and other critical areas. To insure maintainability and low operating costs, we are emphasizing simplicity throughout the entire system.

The FY 73 request of $48.1 million will be used to complete the fly-off competition and, if the decision is made to go ahead, to initiate full-scale development and production in early 1973. We could then have an initial operating capability in the mid-1970s.

AWACS

In the air defense area, our most important program is the Airborne Warning and Control System (AWACS). Our present ground-based systems are vulnerable to enemy missile attack, and they have a limited capability to detect low altitude bomber penetrations. Also, they are costly to operate.
The AWACS will be relatively invulnerable to enemy attacks, and it will be able to remain airborne on station from seven to nine hours, at 1,000 miles from its operating base. It will have a radar lock-down capability for detecting low altitude penetrations.

The AWACS will also provide an improved command and control capability for our tactical forces.

Boeing Company was selected as the prime contractor for AWACS. The development phase is under a cost plus incentive contract while production will be on a fixed price basis. Boeing will use the commercial 707 as the basic airframe. For the radars, Hughes and Westinghouse are participating in a competitive prototype development program.

Two 707s have been modified as testbed aircraft and the prototype radars are presently being tested in ground facilities. In late March, we will begin extensive competitive radar flight testing. Based on these test results, the Air Force will select the winning radar which will be used in the second phase of the program when the total system will be developed.

Most of the $160.0 million R&D funds requested for FY 73 will be used to complete the prototype flight test program.
After that we will decide whether to proceed with full design and engineering development. The $309.9 million in the FY 73 procurement budget will be used to buy three test aircraft and AWACS peculiar operational and maintenance support equipment required for the test phase. These aircraft and support equipment would eventually enter the operational inventory. Our current goal is to achieve an initial operational capability in the mid-1970s.

Advanced Prototypes

In other areas, we are pursuing advanced prototype work, as encouraged by former Secretary Packard. We believe that selected prototype projects are warranted to obtain better information on costs and operational suitability before beginning new weapon development and procurement programs. This will help assure that we have an adequate base of demonstrated technology and a sufficient number of alternative approaches for meeting requirements.

The Air Force is proceeding with two aircraft projects. These prototypes will be "bare bones" models, without the subsystems necessary for a fully operational system.

Congress has approved $12 million for FY 72 development work on demonstration prototypes for the lightweight fighter and the Medium STOL Transport, and the FY 72 "Supplemental."
includes an additional $5.8 million. In FY 73 we are requesting $92 million to continue these two projects.

In the Lightweight Fighter prototype our objective is to achieve extremely high maneuverability and good control. It will incorporate design ideas which we were unable to use in past development programs due to high technical risk.

Our goal in Advanced STOL Transport prototypes is to provide data on the cost and design features associated with short field performance in an aircraft with an operational weight of around 150,000 pounds, about the same as the C-130.

The expanded use of prototype development will help in selecting and managing the technology used in weapon systems. What we are trying to do is put ourselves into a position where we have data to make sounder decisions. Prototyping will provide demonstrated technology options from which we can select programs to go into engineering development.

Aeronautics

In addition to aeronautical research going on in our present Air Force facilities, we are working closely with NASA and DOD in the joint planning for a new National Test Facilities Program. In 1967, a study was initiated to identify, on a national basis, aeronautical test facilities which will
satisfy requirements for new technology in the 1980-2000 time period. The Office of the Secretary of Defense advised the Congress on January 7 of this year that the Air Force will undertake detailed planning and preliminary design of an Aeropropulsion Systems Test Facility and a High Reynolds Number Transonic Tunnel at the Arnold Engineering Development Center, Tennessee. These projects, with other essential R&D facilities to be provided by NASA, will give the nation the means to obtain sound technological support for future systems.

Astronautics

We are requesting $345.7 million for our space R&D programs.

In the field of early warning satellites, the system has progressed during the last year. The sensor fields of these satellites will encompass almost half the surface of the earth. These systems are for the purpose of detecting ICBM and SLBM launches and to report atmospheric nuclear explosions.

We are continuing our development of satellites for the Defense Communications System. The initial space system has been operational for several years. In November we deployed the first two satellites of a follow-on system, however, both satellites malfunctioned. We have been successful in returning one of these satellites to limited operational
status and have turned it over to the Defense Communications Agency which is the operational user. We will continue our efforts to determine the causes of these malfunctions, in order to get both satellites into full operation if possible, and to affect design corrections in subsequent satellites.

A need exists to provide improved worldwide navigation support for all our forces. We have completed studies which indicate that a satellite system can be developed which meets the needs of all users. This system can provide accurate position and velocity data to users located anywhere in the world. In addition, it will minimize the complexity of user equipment.

The concept we are pursuing is based upon having four satellites in view of any user continuously any place in the world. To confirm the study results and better understand the technological problems and costs involved, we are undertaking a demonstration program through a ground-based simulation of the concept. We are also developing and flight testing some of the more critical components of the system. If these steps prove successful, we would consider further development.
In addition to the space systems I described above, the Air Force has an active program to develop the technology required for future space systems. Advancements are being made in space guidance, communications, power supplies and propulsion. The more critical subsystem developments are space tested prior to being committed to a system.

This technology program, we believe, will permit us to reduce the technical uncertainties associated with future space system development and enable us to have the necessary building blocks in hand when the decision is made to go ahead with new programs.

In the future we would like more flexibility and eventually lower costs in our space programs. The high cost of space operations, however, still prevents us from developing a space capability in all the areas where we think satellites could enhance our national defense. Therefore, we are very interested in the Space Transportation System concept now being developed by NASA. We are working closely with NASA to assure that the configuration of the Space Transportation System will also satisfy DOD needs.
IV. INSTALLATIONS AND LOGISTICS

Now let me comment on our efforts to improve Air Force logistics operations and military construction. Last year I mentioned the development of an Advanced Logistics System to streamline the management of Air Force wholesale logistics. This system will result in a considerable savings in manpower and dollars and will be operational on schedule in 1973.

In another area, we are concerned with the increasing costs of supporting our weapon systems over their entire life cycle. Not only have these costs increased due to the age of many of our aircraft, but the per flying hour cost of supporting new weapons continues to rise. Because of this we are involved in a concerted effort to improve the reliability and maintainability of both new and existing systems. During development and production of new systems we are placing more emphasis on system reliability and its impact on O&M costs. For example, in the A-X program we are requiring mandatory use of life cycle cost formulas as an aid to making design decisions and as a factor in source selection.

On older systems, our revised world-wide maintenance data collection system gives us detailed information on each specific system. We can then focus our efforts to reduce operating costs on the high cost systems first. For example, recent
investment in modifications to improve reliability show us we can gain a return many times over within a few years.

Military Construction

In 1973 we will begin to realize the benefits of our long-range depot modernization program. For FY 72, the Congress approved $32.5 million for military construction and $22.1 million for equipment as the first phase of this program. These funds are providing for the replacement of outdated or inefficient maintenance and distribution tools and facilities. This year we are requesting $41 million under military construction and $25.8 million for procurement of equipment to continue this effort. This will allow us to improve quality and worker productivity. Our objective is to insure that our depots maintain the capability to provide responsive and economical support for our latest weapon systems.

The FY 1973 Military Construction Program will also help us improve career incentives by providing a better living and working environment for our people. We know that the provision of adequate, modern structures can make a very substantial contribution to the retention of our personnel. Therefore, we are requesting $98 million in FY 73 for bachelor housing, dependent schools, medical construction, and related community facilities.
With respect to family housing, the 200-unit industrialized housing demonstration project at George AFB, which I described to you last year, has been successfully completed. Our airmen who occupy this housing are well satisfied. Moreover, the entire project was accepted, without deficiency, in October of last year and was completed within the original cost estimate.

In the FY 1972 construction program, we have 12 family housing projects totaling 3,600 units. Of these, 2,900 units at nine locations will be industrially manufactured and relocatable.

The FY 73 program includes 3,168 units at 11 locations and the large majority of these also will employ the industrialized concept. The civilian construction industry has shown increasing interest in this approach, and we hope that our experience will be of direct benefit in helping to solve domestic housing problems.
V. CONCLUSION

We believe the Air Force has made significant progress during the last year. I have discussed four major management areas: organization and personnel policy, weapons procurement, research and development, and installations and logistics.

We are improving our organization and planning to provide more effective use of manpower and better career opportunities. We are also stressing policies and programs which will make professional careers in the Air Force more appealing through such incentives as better housing and expanded educational opportunities. Most important, we are emphasizing the need for improvement in human relations, including the need to provide equal opportunity.

With respect to procurement, we are pursuing programs which will achieve incremental modernization of our forces at what we believe to be the least possible cost. And when evaluating the need for new weapon systems, we are making careful assessments of our own capabilities and those of our allies and are ruling out capabilities that are not essential to performance of assigned missions.

In our research and development programs, we are providing as much hardware competition and evaluation as feasible so that a determination of operational suitability
can be made before making a full development and production commitment. We are also expanding our use of the prototype technique to give us sound technological options, as well as analyses of cost and operational data, prior to initiating new development programs.

In order to hold down our operational support costs, we are streamlining our logistics system to provide responsive support and reduce expensive inventories of spares and supplies.

These steps should help us to meet our primary objective of providing essential and ready forces at the minimum possible expenditure of our nation's resources.

In conclusion, I believe that the request we have presented to you is the lowest which can get the job done. It represents a balanced effort to meet the present and future challenge to our national security.

Thank you.
ENCLOSURE 2

NEWS BRIEFING
SECRETARY OF THE AIR FORCE SEAMANS

Washington, D.C.
16 December 1971

DR. SEAMANS: First, let me say that coming down-stairs that I found that the Australians have just announced that they are taking the 24 F-111Cs at a press statement this morning. I have not actually seen it. It is a matter that has been under discussion with the Australians for some time and frankly, I am very gratified that the decision has finally been made and we can put the aircraft in shape for them and get them over to Australia.

The reason I am here this morning is to discuss with you my recent trip to Southeast Asia. I got back just about a week ago, and I was gone about 12 days. The reason for going, obviously, was to take a look at the Air Force operation.

We have three major responsibilities in Southeast Asia.

One is to support troops, by close support for our own troops and for those of our allies.

Second, is interdiction to stop the flow of supplies
from North Vietnam down into Cambodia and South Vietnam as well as to the request of the Laotians to stop the flow of supplies to the westward in Northern Laos.

And, third, we have the responsibility to help and assist the Vietnamese in the buildup of their capability.

Now, I have some charts and I am just going to flip through them very fast. There are copies of all these so that you can have them for your own use and any questions you may have on the basis of these charts, I will be happy to try and answer them.

There has been a lot of discussion about the air war in Southeast Asia and the question of whether we are building up or doing more, and these charts show that no matter how you slice it, no matter how you look at the air activity of the U. S. over there, the trend is definitely downward and it is downward by these various indices by 50 per cent or more in the last three years.

This first one adds up all attack sorties including B-52s, all the attack aircraft, shows that on the basis of 68 we are down to roughly 39 to 40 per cent. The figure 35 per cent is only through November. Obviously it will take another few weeks before we will have the final number. But if you annualize it it is around 38 or 39 per cent.

If you look at the numbers of aircraft that we have in Southeast Asia for attack purposes, again the same kind of aircraft, you can see that we have gone from roughly 1200
down to, I don't know, 350 or so and this--we are talking here about South Vietnam and Thailand aircraft, Thailand based.

In terms of basing in South Vietnam, we were operating out of 15 bases, and we are operating now out of five. In Thailand, we were operating out of seven; we are now operating out of five.

While I was over there, the timing was right that I could participate in the transfer of Phu Cat, where we had F-4s flying until November. We have taken those squadrons out of there, and we turned over during the time that I was in South Vietnam, Phu Cat, to the South Vietnamese, and they are already operating out of that base with A-37s.

Next chart shows munitions delivered in terms of tons and shows again that there has been a substantial reduction during the same period of time. This includes all munitions delivered, including not only ourselves, but the South Vietnamese and we only have those figures, and the Navy of course, and we only have those figures through October, so this will increase when the final figures are in for the year, but will still be substantially below 70, and, of course, well below the '68 figure.

QUESTION: Do these charts include the Navy?

ANSWER: Yes, they do.

DR. SEANANS: Now, you say--

QUESTION: (Inaudible)?
ANSWER: Yes, they do. I can go back over them.

QUESTION: Except the Air Force first--

ANSWER: Except for the Air Force--obviously the Air Force--that is--I will have to get some help on that. I think this is all U.S. attack aircraft in Southeast Asia, including the Navy.

QUESTION: (Inaudible)?

ANSWER: Now, you say--what has been going on over there that permits us to make these reductions. I want to talk a little bit about the interdiction campaign, and you will see that has been going better the last couple of years. Now, that has been going better because, even though there have been some reductions in sorties, we have been using gunships, the AC-130 gunship, is the one that has proven to be extremely effective. But if you look at the total pattern over there, the reduction is possible also by virtue of the buildup in the Vietnamese Air Force and this just shows the buildup in terms of numbers of aircraft during the same period of time.

I think it is either 41 or 42, and, as you know, the plan is to build up to 50. Fifty-one, I believe it is, during the next year and a half.

Now, this just shows really the impact of the Vietnamese Air Force. Here we have listed total numbers of sorties per year fixed-wing aircraft by the U.S. in South Vietnam. And you can see that it has gone down very substan-
ially in '71. As a matter of fact, this last month the South Vietnamese flew over 90 per cent of the in-country missions, and, if you include Cambodia and South Vietnam, it is well over 50 per cent for the year '71.

Finally, just a word about the Ho Chi Minh Trail. This is not an exact science. We do have sensor trails; along the input to the trails we have sensor strings at the input and the output and the input in '68 for the year— and here you have to talk about a year beginning the first of November, because that is when the dry season starts, and these run for 12 months. And the input was 61—a little over 61,000 tons. The output was 13,000 tons. Now this year, the '69 year, they still had the port in Cambodia; so they were probably getting twice as much as this figure, total tonnage, supplies, ammunition, food, available for their purposes.

During this year they lost the use of the port. They made obviously a tremendous effort to get more supplies down the trail. They put in somewhat more, and you can see they had better success in getting supplies through to Cambodia and South Vietnam, 21,000. This last year that has just ended, we had the new type 130 gunships over there, and we had 12 of them in operation.
We had the D-57 in operation. We had the smart bombs—laser-guided bombs, and we exacted quite a toll. About 9,500 tons got through of 68,000 that entered the trail.

In the trail itself they have to have the order of 40 to 50,000 men to actually operate the trucks, to operate the ant-aircraft and so on, and that takes a considerable amount of supply that is used up in the trail operation that doesn't really do them any good. Obviously their objective is to get supplies through to harass the South Vietnamese and the Cambodians.

QUESTION: Secretary Seamans, when you talk about the through output to 9,500 tons, is that into South Vietnam and Cambodia?

ANSWER: Yes, it is.

QUESTION: And into Laos?

ANSWER: No, I am not talking about Northern Laos. We don't have sensor strings up there in Northern Laos, we do not have those kind of figures up there.

This year that is just starting, we have six additional AC-130 gunships. These happen to be the "E" version. This gives us more endurance. They have even more effective sensors, and the thing that I found when I was over there, is that more and more of the fighters, the F-4s, are working closely with the gunships where a gunship will not only use its own armament to destroy trucks, but will designate trucks for the F-4. There is much more of a team operation than we.
have ever had before.

It is really too, of course, this year to say how well we are going to do or make any predictions. The buildup in the flow of trucks this year, I categorize it as comparable to last year. It is still building up. There was bad weather in the beginning of the season for them. I anticipate, just looking at the numbers of trucks in North Vietnam and the supplies coming in, that they will build up to the same level as last year.

The truck damage this year by our forces is about three times what it was last year. At the same time—but I want to use caution when I say that. Last year we had just brought over some new gunships, the crews were not as well checked out as they are this year, but I have—I believe we are going to have a very, very effective interdiction campaign this year.

Now that is the end of these charts, and I would be happy to answer any questions that you have.

QUESTION: How many numbers can you put on those trucks?

ANSWER: As to the numbers of trucks, it is our estimate that they have in the panhandle of Laos at any one time of the order of 3,000 trucks. You know, they shuttle back and forth relatively short distances. Any one night, they probably have something like a thousand of these trucks
in motion. They have, of course, many more trucks in North Vietnam. As a matter of fact, one of the things that we have watched very closely has been the buildup of new trucks in the truck parks around Haiphong, Hanoi, and north of Hanoi, and the truck parks now have on the order of 7 or 8,000 where six months ago they had very few. And of course they are using the trucks to move supplies down from that region down to the various passes that go into the panhandle.

Last year, we sighted—and obviously sighting one truck more than once—but the truck sightings during the dry season last year were of the order of 30,000. These are sightings by our aircraft. We estimate that we hit of the order of 23 to 25,000 trucks. What you don't really know is how many of those trucks you have actually destroyed, but our estimate is that we have destroyed somewhat, some figure like half that number.

The North Vietnamese are extremely good at taking parts from a number of trucks and putting them together. They are extremely good, incidentally, at camouflaging their trucks when we hit them so it is sometimes difficult to assess the damage that we have done.

But those are the best numbers that I have available.

QUESTION: Those new trucks in the truck parks, north of Hanoi, would they have been Russian or Chinese?
ANSWER: Both.

QUESTION: Both.

QUESTION: You are getting a net reduction on trucks getting through even with less sorties?

ANSWER: Yes.

QUESTION: And less tonnage dropped?

ANSWER: Less tonnage dropped, yes. But I would say that the 50 per cent reduction that I discussed with you is overall, and the reductions that we made in our operations in Laos are less than pronounced than that over the same period of time, probably in the order of, say, 25 per cent.

QUESTION: Does the new presence of enemy aircraft over the Laotian field, make any difference in U.S. tactics?

ANSWER: Yes, of course it does in the sense that we have the job of protecting our aircraft, our B-52s, and our gunships—are using the, even the F-4s, so we have MiG cap.

we have F-4s available in case the MiGs do appear. However, as to forcing us during this campaign to divert on a continuing basis/key attack aircraft, no. We will still be able to carry out the attacks as we planned. However, we obviously must keep watching the MiG operations and we, as yet, don't know to what extent they are planning to build up that operation.
QUESTION: When your--

QUESTION (continuing):--(drowned out) Soviets' alleged difficulties in building trucks at any time, how--I am really puzzled how they can have 7 or 8,000 trucks in their truck parks now, when three months ago they had very few.

QUESTION: That is an enormous number of trucks to be delivered in a very short time by for large-scale truck production.

ANSWER: Well, I have not had an opportunity to get into the--I haven't investigated the production figures in China and Russia and deliveries. All I know is that our reconnaissance aircraft have photographed these trucks and there they are, and they weren't there six months ago.

QUESTION: Do you think they might be replacements for trucks lost on the Trail, they look like they are going to have an increased number of trucks overall?

ANSWER: I think it is a replacement for attrition purposes. Last year they had, I don't know the number last year that they had built up at the same time, but the truck parks as the dry season went on were depleted and got down very close to zero by the end of the dry season.

QUESTION: When your air strength in South Vietnam and in Thailand is reduced as part of the Vietnamization program, what will the South Vietnamese Air Force have in the
way of airpower to deal with the trail system?

ANSWER: Well, we, for the first time are involving the Vietnamese in the interdiction effort this year. I guess it is the history of all air corps that they start out as appendages of armies and there is no exception. In South Vietnam their air force really consisted of aircraft assigned to each one of the four military regions. We have been encouraging them to use their airpower in a more flexible fashion. They are starting to do that, and, as part of that process, their general staff are providing on the order of 5 to 10 per cent of their aircraft for interdiction this year. The aircraft that they have for this purpose are the A-1s and the A-37s, as well as the two types of gunship, the AC-47 and the AC-119s. The operation with us will be partly for educational purposes and will be, of course—it will be carried out in the more benign areas of the trails, and this is something that is just in the process of starting right now.

QUESTION: How many airplanes are there in this thing, a dozen, two dozen?

ANSWER: I forget the exact number. They have got a squadron of AC-47s, and a squadron of 119s with—we are trying to provide them with another squadron of more up-to-date version of the 119. They are not all used for this purpose and I guess they are on the order of six A-37s they are currently using and maybe a comparable number of A-1s.
As in all cases with the Vietnamese, they have to start in and learn the process with relatively few, and then build up as they gain confidence.

QUESTION: Mr. Secretary, have you changed your estimates of how many, in view of the buildup of the South Vietnamese Air Force, how much residual air forces will have to stay after the army leaves?

ANSWER: My point here is that we have—we have come down dramatically in the last three years. Projection of where we go from here is a matter that is under consideration by the President and Mr. Laird, and I would just as soon not comment on where it might go, because I just don't know.

QUESTION: Sir, Mr. Packard is leaving and your name has been prominently mentioned as a possible replacement. Has anybody said anything to you about this?

ANSWER: Well, I believe a lot of names are being mentioned as possibilities to move into Mr. Packard's job. Nobody is ever going to replace him; he is a very unique man and we are going to miss him very much.

QUESTION: You didn't answer the question. (Laughter)

ANSWER: It's hard for me to make it.

QUESTION: How many enemy aircraft have been sighted so far over here?

ANSWER: Let's see, when I was there there had been in
of the order of 12 to 15 incursions into one part or another
of Laos over a two-month period. Since then there have been
a number more. It is that order of magnitude so far.

QUESTION: Are they serious or just experimental?

ANSWER: It's very hard, of course, because we don't
know what their intention is. It certainly is partly experi-
mental. They are using their ground control to vector the
aircraft. There are a number of ways of coming in. One of
the tactics is to come at fairly low altitude until they are
in close proximity and then zoom up and close in, and, as you
know, on one occasion they flew essentially right through a
cell of three B-52s. They did fire air-to-air missile and
they did miss by a significant amount.

QUESTION: We didn't know that.

ANSWER: Well, I'm sorry.

QUESTION: Are they attempting ambush around the sensor patterns?

ANSWER: They seem to be trying these maneuvers at various places along the North
Vietnamese-Laotian border. Myself, I don't know of
any specific pattern for any one particular location.

QUESTION: When was that attack on the B-52s, Mr.
Seamans?

ANSWER: Well, it occurred—it—just prior to the time
that I got out there. I can't give you the exact date.
"When I was there two to three weeks ago, something of that order.

QUESTION: (Unintelligible) through this, I think you called it a cell of B-52s?

ANSWER: We are flying the B-52s normally in cells of three.

QUESTION: Did this come through this when it was gaining altitude or—you said they came in low—did this happen?

ANSWER: Well, they will fly out from their base at relatively low—this—they have got to clear mountains and so on, but low compared to B-52s who are flying at altitudes in excess of 30,000 feet, and then they will zoom up and they are on such a course that, with their ground control, they come in presumably at a point where they can lock on their radar on our aircraft and fire their missiles.

QUESTION: Were there interceptors on this attempt by (drowned out)?

ANSWER: There were not, no. No, there were not.

QUESTION: Was there more than one (unintelligible)? You say they?

ANSWER: I am using they in describing the North Vietnamese. There was only one aircraft in this case.

QUESTION: When you say—
ANSWER: As a matter of fact, I know of no case where they come in with more than one at a time.

QUESTION: Well, when you say they flew through the cell, did it actually...

ANSWER: Well, the B-52's had some warning and they were splitting apart and the plane went right through the middle.

QUESTION: Mr. Secretary, (unintelligible) if you were to make a chart of this one trend that wouldn't follow that pattern, would be the number of protective reactions on North Vietnam. I think the last number given us was 97 this year. What (inaudible) was different from last year? Are they getting more aggressive or are--

ANSWER: Well, they--they have got--

QUESTION: The weapons?

ANSWER: They have built up their defensive capability in terms of anti-aircraft, everything from 23 MM up to 100 MM. They are building up their surface-to-air missile capability. The anti-aircraft is, a lot of that is right in the trails themselves, where the surface-to-air is over in North Vietnam, and they have sufficient range so that they can attack our aircraft when we are over the Ho Chi Minh Trail, and our policy is, that when that takes place we attack the SAM site.

QUESTION: Our standards for--do our pilots have the same standing orders that they had last year and the year be-
QUESTION: What is your overall evaluation of this reduction of supplies coming down the trail as far as the Viet Cong capability in South Vietnam?

ANSWER: Well, this gets into an estimate of what would they like to get through, what do they feel they need? We believe, adding up the numbers of people that they have in Cambodia and South Vietnam, including the Viet Cong, that they would like to have of the order of at least twice that number. I think that maybe a better way of looking at it is to note what they have been able or not been able to do in the last year. They have not been able to mount any major offensive that has had any significance really whatsoever in South Vietnam. And, although they have had--they have been more aggressive in Cambodia, it is being a relatively minor operation.

QUESTION: You speak twice, which figure, the 9500?

ANSWER: Yes, the 9500.

QUESTION: Thank you very much, sir.

ANSWER: Okay, your welcome.